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Wave plates made of birefringent materials can only be used at certain single wavelength, since the phase retardation 
produced is approximately inverse proportional to the wavelength. In this article, we introduced a geometric numerical 
method to design multi-wavelength wave plates with the plot of the curves of kd0(λ) (k=1, 2,…), where d0(λ) is the 
thickness of the zero-order λ/4 waveplate. The two common cases in designing are discussed and simulated with quartz 
crystal as application examples. In the first case, the thickness is specified. A quartz plate with thickness of 1 mm is 
designed, which operates as λ/4 waveplate at 866 nm, as λ/2 waveplate at 777 nm, and as λ waveplate at 606.8 nm. In the 
second case, the two wavelengths are specified. Two dual-wavelength quartz plates for 460 nm and 520 nm are designed. 
One is 282 μm thick, which operates as a λ/4 waveplate at 460 nm and a λ waveplate at 520 nm. The other one is 380 μm 
thick, which operates as λ/4 plate at both 460 nm and 520 nm. 
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1. Introduction 
 
Polarized light and polarization technology are 

essential in cryptography, tissue characterization, 
ellipsometry, spectroscopy, and other laser technology 
[1,4]. Polarization technology is the basis of linear 
polarization, circularly polarization and elliptically 
polarization of polarized light. Circularly polarized light 
and elliptically polarized light are produced by linear 
polarized light going through the optical phase retarders. 
The emergent light is circularly polarized light if the 
incident linearly polarized light passing through a quarter 
wave plate with azimuth of exactly 45° respect to 
incident polarization direction. The emergent light is 
usually elliptically polarized light if the azimuth of 
incident light is not exactly 45°, and the ellipticity can be 
regulated through the changes in azimuth.  

Therefore, wave plate is essential in design of optical 
instruments and optical measurement technology. There 
are mainly three types of optical phase retarders, 
Babinet–Soleil compensator [5, 6], Fresnel rhomb-type 
retarders [7-8] and birefringent crystal plates [9-14]. 
Babinet–Soleil compensator and Rhomb-type retarders 
have nice achromatic quality, but also have large volume 
and large beam translation. The most commonly used 
phase retarders are made of birefringent crystals. 

 Higher precision of the thickness of wave plate is 
required due to higher birefringence. Therefore, most 
current wave plates are commonly made of material of 

mica, quartz or MgF2. Mica can be naturally split into 
thin slices, which is generally used to make true 
zero-order wave plates. While quartz and MgF2 are 
generally used to make true multi-order ones.  

Single crystal retarders are non-achromatic, which 
can only work at particular wavelength. Composite wave 
plates which are consist of two or more pieces with same 
or different materials, are achromatic in a certain spectral 
range, but the accurate range is limited. It is difficult to 
achieve accurate retardation at any two particular laser 
wavelengths at the same time. With the method 
introduced below, we can design exactly phase retarders 
operate at any two or more wavelengths.  

 
 
2. Theory  
 
Uniaxial crystals like quartz have one axis of 

symmetry in the index ellipsoid, the optic axis, and display 
two distinct indices of refraction, i.e. no (the ordinary 
refractive indices) and ne (the extraordinary refractive 
indices). Light which incident on a uniaxial crystal will 
split into two rays of polarized light with indices of no and 
ne, which vibrate in perpendicular directions. The 
retardation δ introduced by a birefringent plate between 
the two orthogonal components of emergent light is given 
by [15]: 
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where λ represents the incident light wavelength, d 
represents the thickness of the waveplate. The retardation 

( )   is obviously a function of λ, because the principal 
refractive index, no and ne, are functions of λ, which are 
determined by the dispersion equation. And the 
birefringence of the material: 
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is also function of λ. 
   For a quarter-wave plate (QWP), the retardation 
satisfies [16]: 
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For a half-wave plate (HWP), the retardation 

satisfies: 
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For a full-wave plate (FWP), the retardation 

satisfies: 
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Compare with Eqs. (1)-(5), we have: 
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From Eq. (6), we know that the thickness of 

zero-order QWP is 
1
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as a unit block, which builds up the other multi-order 
wave plates. 

If a certain thickness retarder is designed for 
different wavelengths, for example, it acts as a QWP at λ1 
and a HWP at λ2, then the following condition should be 
satisfied: 

1 1 2 2
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, 1,2,...

4 2

k k
d k

n n

 
    

 
     (8) 

It requires that k be only integer solution of the 
equation are valid. 

3. Design and results 
 
Eq.(8) is difficult to solve, so we give the numerical 

solves by an geometric way. The value of birefringence 
for the quartz is taken from Ghosh [17]: 
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Fig. 1. Variation of birefringence of quartz with 

wavelength 
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Fig. 2. Integer multiples of unit thickness with 
wavelength. The lowest line is the unit thickness of 
d0(λ),which varies approximately from 10μm (denoted 
by a) at 400 nm to 30μm (denoted by b)1000 nm. The 
range of d0(λ), 2d0(λ)…are [a, b], [2a,2b] … 
respectively. The horizontal symmetry of the curves are 
plotted in  dotted lines, which helps to  figure out the  
           overlay range of different lines    
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The variation of birefringence of quartz is plotted in 

Fig. 1. With the data of birefringence, the unit d0 and its 
integer multiples are calculated and plotted with solid 
lines in Fig. 2. Thicker linewidths present thicker wave 
plate slice with higher multiples of d0. The mirror 
symmetry of the solid lines is shown in dotted lines in the 
same graph. With Fig. 2, it’s easy to figure out the 
overlay range of d0(λ) and 2d0(λ), or 2d0(λ) and 3d0(λ), or 
any other two curves. 

If a certain thickness retarder is designed for 
different wavelength, for example, it acts as a QWP at λ1 
and a HWP at λ2. A feasible method is to select a 
thickness that lies in the overlap of the range between d0 
and 2d0. i.e. [2a, 1b] as indicated in the right vertical axis 
of Fig. 2. In fact this is the case k1=k2=1 in Eq. (8). We 
can also infer from the graph that a quartz sheet with 
thickness of [3a, 2b] can act as a QWP at a certain 
wavelength and HWP at another. And a thickness lies in 
[4a, 2b] corresponding to a FWP and a HWP. A thickness 
lies in [4a, 3b] corresponding to a FWP and a QWP. 

The benefits of the numerical solutions are 
unambiguous and straightforward, but for case that k 
value is big, or the retarder in designing is thick, 
analytical solutions may be more convenient. Suppose 
the wavelength in design is 400 nm-1000 nm, and the 
thickness of zero-order QWP at 400 nm is a, at 1000 nm 
is b, which can be calculate from Eq. (7). We are only 
interested in the case that the range of kd0(λ) and k’d0(λ) 
have an overlap section. Let k’=k+m, and we have this 
condition: 
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The thickness d of designed dual-wavelength plate 
should satisfy: 

0 1 0 2' ( ) ( )d k d kd              (12) 

where k’>k and λ2>λ1. If k or k’ is integer multiple of 4, 
the plate is a FWP, or else if k or k’ is integer multiple of 
2, the plate is QWP. Or else it’s a QWP. Which can be 
simply write as:  
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Regularly, there are two common cases in the actual 
wave plate designing. One case is that the thickness is 
specified regarding to the limitation of materials, while 
the two operating wavelengths are not specified. Actually, 
lasers of the most wavelengths are commercial available 
at present. Take quartz for example, let’s design a quartz 
sheet of thickness d=1mm, which can act as different 
wave plates at multi-wavelength. Suppose the working 
wavelength is from 400~1000 nm, then a=d0(400 nm) 
=10.5 μm, b=d0(1000 nm) =28.4 μm, which can also be 
infer from the line of d0 in Fig. 2. Because unit d0(λ) 
varies with wavelength λ, as shown in Fig. 2, d contains 
different d0(λ) for λ. As mentioned before, k is the 
number of units contained. The range of k can be 

calculated from Eq. (11), (12): d/b≤k≤d/a, or 
35.2≤k≤95.2. It requires that k be only integer. 

 

 

 
Fig. 3. Schematic diagram for designing 
multi-wavelength plate when the thickness is specified. 
A quartz sheet with thickness of 1mm can act as 
different wave plate at different wavelength. For 
examples, it’s a  QWP at 866 nm (k = 41), a HWP at  
    777 nm (k=46), and a FWP at 606.8 nm(k=60) 
 
The relation of wavelength and k is illustrated in Fig. 

3. The quartz waveplate with 1mm thickness acts as 
different wave plates at certain separate wavelengths. For 
examples, at wavelength of 866 nm, k=41, as shown in 
the graph, it’s a QWP, according to Eq. (13). In the same 
way, at 777 nm (k=46), it’s a HWP. And at 606.8 nm, it’s 
a FWP. The same goes for any other point from k=36 to 
95 in Fig. 3.  

 

 

Fig. 4. Schematic diagram for designing 
dual-wavelength plate when the wavelength is specified. 
For given wavelengths of 460 and 520 nm (at the two 
ends of the horizontal axis), the thickness for design is 
located on the point of intersection (marked with 
circles). Wave plate with thickness of 380μm is a QWP 
at both 460 (k=31) and 520 nm (k=27). Wave plate with 
thickness  of  282μm is a QWP at 460 (k=23) , or a  
               FWP at 520 nm (k=20) 
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The other case is that the two wavelengths are 

specified by practice requirement, the thickness is need 
to be determined. In this case, the simulation is given in 
Fig. 4. Again, we use the geometric numerical method, 
because it’s difficult to get integer solutions for k at both 
wavelengths within limited thickness. Suppose the 
working wavelength is 460 and 520 nm, which is set as 
the starting and ending point for calculate, as shown in 
the graph at the two ends of the horizontal axis, the 
thickness varies with k at different wavelengths is 
illustrated in Fig. 4. If a thickness has integer solutions 
for both 460 and 520 nm, there is a point of intersection 
on the vertical axis, either on the left axis or on the right, 
which is all the same due to the mirror symmetry of the 
lines. Comparing with calculation and instructions in Fig. 
4, there is a cross point of lines k=27 and k=31 at 
thickness of 380 μm, where a circle is marked. Which 
means that, at this thickness, it is a QWP at both 460 nm 
and 520 nm according to Eq.(13). And there is another 
cross point of line k=20 and line k=23 at thickness of 282 
μm, also marked in circle. Which means that it is a QWP 
at 460 nm and FWP at 520 nm according to Eq. (13).  

 
 
4. Application and validation 
 
In this part, we will compare with real commercially 

available dual-wavelength wave-plates [18]. 
Specifications of the commercial product are shown in 
the table below: 

 
 

Table 1. Specifications of commercial dual-wavelength 
wave-plates 

 

Part Number Models Thickness 

WPDM05M-1064H

-532Q 

λ/4 @ 532 nm and λ/2 

@ 1064 nm 

303.8145 μm 

WPDM05M-532H-

1064Q 

λ/4 @ 1064 nm and 

λ/2 @ 532 nm 

1127.6532 μm 

 
 
This is the case that wavelength are given. The 

simulation figure is much like the Fig. 4, except that 
x-axis is from 532 nm to 1064 nm, and the y-axis should 
larger than 1200 nm (according to the thickness of 
WPDM05M- 532H-1064Q), and so that the lines are 
much closer to each other. Hereby, only several related 
lines are given in Fig. 5, for the sake of simplicity and 
clarity. The simulation agrees with the real data very well, 
which shows the validation of this numerical approach. 
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 Fig. 5. Schematic diagram for designing 
dual-wavelength plate with wavelengths of 532 and 
1064 nm (at the two ends of the horizontal axis). The 
thickness for design are located on the point of 
intersection (marked with circles). Wave plate with 
thicknessof ~300μm is a QWP at 532 nm (k=21) and a 
HWP at 1064nm (k=10). Wave plate with thickness of 
~1130μm is a HWP at 532 nm (k=78), or  a QWP at  
                  1064 nm (k=37) 
 
 
5. Conclusions 
 
In this work, we discussed the condition that a 

retarder can work at multi-wavelength as different 
waveplate with a geometric numerical method. In 
particular, the quartz sheet with thickness of 1mm, 380 
μm and 282 μm are studied. This method is intuitive and 
effective for designing single plate which can work in 
certain separated wavelengths. 
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